Syllabus Module Dept. Of Mathematics Session : 2021-2022 Khatra Adibasi Mahavidyalaya

	Semester -1		
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/ 101/C-1	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	CDG
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	CDG
		Unit 3	RB

		Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid. Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	CDG
SH/MTH/ 102/ C-2	Algebra	Unit 1 Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving AM≥GM≥HM, Cauchy- Schwartz inequality.	AI
		Unit 2 Equivalence relations. Functions, Composition of functions,	AI

		Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic. Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear	MN
		independence. Unit 4 Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix	MN
SH/MTH/ 103/ GE-1	Calculus, Geometry & Differential Equation (GE T1)	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule,	CDG

applications in business,	
economics and life sciences.	
Unit 2	CDG
Reduction formulae, derivations	
and illustrations of reduction	
formulae of the type $\int sin^n x dx$,	
$\int \cos^n x dx$, $\int \tan^n x dx$,	
$\int \sec^n x dx \int (\log x)^n dx$,	
$\int sin^m x cos^n x dx$, parametric	
equations, parameterizing a	
curve, arc length, arc length of	
parametric curves, area of	
surface of revolution.	
Techniques of sketching conics.	
Unit 3	CDG
Reflection properties of conics,	
rotation of axes and second	
degree equations, classification	
of conics using the discriminant,	
polar equations of conics.	
Spheres. Cylindrical surfaces.	
Central conicoids, paraboloids,	
plane sections of conicoids,	
Generating lines, classification of	
quadrics, Illustrations of graphing	
standard quadric surfaces like	
cone, ellipsoid.	
Unit 4	CDG
Differential equations and	
mathematical models. General,	
particular, explicit, implicit and	
singular solutions of a differential	
equation. Exact differential	
equations and integrating	
factors, separable equations and	
equations reducible to this form,	
linear equation and Bernoulli	
equations, special integrating	
factors and transformations.	1

COURSE		COURSE TOPIC	Teachers
CODE SH/MTH/ 201/C-3	TITLE Real Analysis	Unit 1 Review of Algebraic and Order Properties of R, ε - neighbourhood of a point in R. Idea of countable sets, uncountable sets and uncountability of R. Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets. Suprema and Infima. Completeness Property of R and its equivalent properties. The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano- Weierstrass theorem for sets, compact sets in R, Heine-Borel Theorem.	AI
		Unit 2Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences. Cauchy sequence, Cauchy's Convergence Criterion.	RB
		Unit 3 Infinite series, convergence and divergence of infinite series,	RB

		Triple product, introduction to	
		Unit 4	AI
		regular singular point.	
		differential equation about an ordinary point, solution about a	
		Power series solution of a	
		of the phase plane	
		Equilibrium points, Interpretation	
		Unit 3	CDG
		two unknown functions.	
		coefficients: Two Equations in	
		systems with constant	
		normal form, homogeneous linear	
		coefficients, Basic Theory of linear systems in	
		systems with constant	
		an operator method for linear	
		systems, differential operators,	
		equations, types of linear	
		Systems of linear differential	
		Unit 2	CDG
		of parameters.	
		coefficients, method of variation	
		coefficients, Euler's equation, method of undetermined	
		higher order with constant	
		homogeneous equations of	
		homogeneous and non-	
		applications, Linear	
		Wronskian: its properties and	
		homogeneous equation,	
		principle of super position for	
		equation of second order,	
	Vector Calculus	Theorem (Statement only). General solution of homogeneous	
202/C-4	Equations and	Lipschitz condition and Picard's	
SH/MTH/	Differential	Unit 1	CDG
		Conditional convergence.	
		Leibniz test. Absolute and	
		Integral test. Alternating series,	
		Test, Cauchy's nth root test,	
		Limit Comparison test, Ratio	
		Cauchy Criterion, Tests for convergence: Comparison test,	

		vector functions, operations with	
		vector-valued functions, limits	
		and continuity of vector	
		functions, differentiation and	
		integration of vector functions.	
SH/MTH/	Real Analysis	Unit 1	CDG
	_	Review of Algebraic and Order	CDG
203/GE-2	(GE T3)	Properties of R, ε -	
		neighbourhood of a point in R.	
		Idea of countable sets,	
		uncountable sets and	
		uncountability of R. Bounded	
		above sets, Bounded below sets,	
		Bounded Sets, Unbounded sets.	
		Suprema and Infima.	
		Completeness Property of R and	
		its equivalent properties. The	
		Archimedean Property, Density	
		of Rational (and Irrational)	
		numbers in R, Intervals. Limit	
		points of a set, Isolated points,	
		Open set, closed set, derived set,	
		Illustrations of Bolzano-	
		Weierstrass theorem for sets,	
		compact sets in R, Heine-Borel	
		Theorem.	
		Unit 2	CDG
		Sequences, Bounded sequence,	
		Convergent sequence, Limit of a	
		sequence, lim inf, lim sup. Limit	
		Theorems. Monotone Sequences,	
		Monotone Convergence	
		Theorem. Subsequences,	
		Divergence Criteria. Monotone	
		Subsequence Theorem	
		(statement only), Bolzano	
		Weierstrass Theorem for	
		Sequences. Cauchy sequence,	
		Cauchy's Convergence Criterion.	
		Unit 3	CDG
		Infinite series, convergence and	
			1
		divergence of infinite series,	
		divergence of infinite series, Cauchy Criterion, Tests for	

		Limit Comparison test, Ratio	
		Test, Cauchy's nth root test,	
		Integral test. Alternating series,	
		Leibniz test. Absolute and	
		Conditional convergence.	
	SEN	IESTER - III	
COURSE	COURSE	COURSE TOPIC	Teachers
CODE	TITLE		
SH/MTH/	Theory of Real	Unit 1	CDG
301/C-5	Functions &	Limits of functions ($arepsilon$ - δ	
	Introduction to	approach), sequential criterion	
	Metric Space	for limits, divergence criteria.	
		Limit theorems, one sided limits.	
		Infinite limits and limits at	
		infinity. Continuous functions,	
		sequential criterion for continuity	
		and discontinuity. Algebra of continuous functions. Continuous	
		functions on an interval,	
		intermediate value theorem,	
		location of roots theorem,	
		preservation of intervals	
		theorem. Uniform continuity,	
		non-uniform continuity criteria,	
		uniform continuity theorem.	
		Unit 2	CDG
		Differentiability of a function at a	
		point and in an interval,	
		Caratheodory's theorem, algebra	
		of differentiable functions.	
		Relative extrema, interior	
		extremum theorem. Rolle's	
		theorem. Mean value theorem,	
		intermediate value property of	
		derivatives, Darboux's theorem.	
		Applications of mean value	
		theorem to inequalities and	
		approximation of polynomials.	
		Unit 3	RB
		Cauchy's mean value theorem.	
		Taylor's theorem with Lagrange's	

		form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $ln(1 + x)$, $1/ax + b$. Application of Taylor's theorem to inequalities.	
		Unit 4 Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces.	RB
SH/MTH/ 302/ C-6	Group Theory-I	Unit 1 Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups.	MN
		Unit 2 Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups.	MN
		Unit 3 Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem.	MN

		Unit 4 External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit 5 Group homomorphisms,	MN MN
		properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.	
SH/MTH /303/C-7	Numerical Methods Numerical	Unit 1 Algorithms. Convergence. Errors: Relative, Absolute. Round off. Truncation.	AI
	Methods Lab	Unit 2 Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula-falsi method, fixed point iteration, Newton- Raphson method. Rate of convergence of these methods.	AI
		Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU Decomposition	AI
		Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory forward and backward difference interpolation. Numerical differentiation: Methods based on interpolations, methods based on finite differences.	AI
		Unit 5	AI

		Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rd rule, Simpsons 3/8th rule, Weddle's rule, Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's 1/3rd rule, Gauss quadrature formula. The algebraic eigenvalue problem: Power method. Approximation: Least square polynomial approximation.	
SH/MTH /	Algebra (GET2)	Unit 1	CDG
304/GE-3		Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality. Unit 2	CDG
		Equivalence relations. Functions, Composition of functions, Invertible functions, One to one correspondence and cardinality of a set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.	
		Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of	RB

		Iteration and the strength of	
		linear systems, applications of	
		linear systems, linear	
		independence.	
		Unit 4	RB
		Introduction to linear	
		transformations, matrix of a	
		linear transformation, inverse of	
		a matrix, characterizations of	
		invertible matrices. Subspaces of	
		R ⁿ , dimension of subspaces of R ⁿ ,	
		rank of a matrix, Eigen values,	
		Eigen Vectors and Characteristic	
		Equation of a matrix. Cayley-	
		Hamilton theorem and its use in	
		finding the inverse of a matrix	
SH/MTH /	Programming		AI
305/SEC-1	using C (New)		
		ESTER - IV	
COURSE	SEM COURSE	ESTER - IV COURSE TOPIC	Teachers
COURSE CODE			Teachers
			Teachers MN
CODE SH/MTH	COURSE TITLE Riemann	COURSE TOPIC	
CODE	COURSE TITLE Riemann Integration	COURSE TOPIC	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities	
CODE SH/MTH	COURSE TITLE Riemann Integration	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums,	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums,	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions.	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and	
CODE SH/MTH	COURSE TITLE Riemann Integration and Series of	COURSE TOPIC Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise	

		Integrals. Fundamental theorem	
		of Integral Calculus.	
		-	
		Unit 2	MN
		Improper integrals. Convergence	
		of Beta and Gamma functions.	
		Unit 3	MN
		Pointwise and uniform	
		convergence of sequence of	
		functions. Theorems on	
		continuity, derivability and	
		integrability of the limit function	
		of a sequence of functions.	
		Series of functions;	
		Theorems on the continuity and	
		derivability of the sum function of	
		a series of functions; Cauchy	
		criterion for uniform convergence	
		and Weierstrass M-Test.	
		Unit 4	MN
		Fourier series: Definition of	
		Fourier coefficients and series,	
		Reimann Lebesgue lemma,	
		Bessel's inequality, Parseval's	
		identity, Dirichlet's condition.	
		Examples of Fourier expansions and summation results for series.	
		Unit 5	D A D I
			MN
		Power series, radius of	
		convergence, Cauchy Hadamard Theorem.	
		Differentiation and integration of	
		power series; Abel's Theorem;	
		Weierstrass Approximation	
		Theorem.	
SH/MTH/402/C-	Multivariate	Unit 1	AI
9	Calculus	Functions of several variables,	
3	Calculus	limit and continuity of functions	
		of two or more variables	
		Partial differentiation, total	
		differentiability and	

		condition for differentiability. Chain rule for one and two	
		independent parameters,	
		directional derivatives, the	
		gradient, maximal and normal	
		property of the gradient, tangent	
		planes, Extrema of functions of	
		two variables, method of	
		Lagrange multipliers, constrained	
		optimization problems	
		Unit 2	AI
		Double integration over	/1
		rectangular region, double	
		integration over non-rectangular	
		region, Double integrals in polar	
		co-ordinates, Triple integrals,	
		Triple integral over a	
		parallelepiped and solid regions.	
		Volume by triple integrals,	
		cylindrical and spherical co-	
		ordinates. Change of variables in	
		double integrals and triple	
		integrals	
		Unit 3	AI
		Definition of vector field,	
		divergence and curl.	
		Line integrals, Applications of	
		line integrals: Mass and Work.	
		Fundamental theorem for line	
		Fundamental theorem for line	
		Fundamental theorem for line integrals, conservative vector	AI
		Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface	AI
		Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over	AI
		Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces.	AI
		Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence	AI
		Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem.	AI
SH/MTH	Ring Theory	Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1	AI
SH/MTH /403/ C-10	Ring Theory and Linear	Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1 Definition and examples of rings,	
		Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1 Definition and examples of rings, properties of rings, subrings,	
	and Linear	Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields,	
	and Linear	Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal,	
	and Linear	Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields,	

		ideals, prime and maximal ideals.	
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and	RB
		III, field of quotients.	
		Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	RB
		Unit 4 Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.	RB
SH/MTH /404/GE-4	Differential Equations and Vector Calculus (GET4)	Unit 1 Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non- homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation	CDG

		of parameters.	
		Unit 2	CDG
		Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane	CDG
		Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	0.000
		Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	CDG
SH/MTH / 405/SEC-2	Graph Theory (SEC T4)	Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism of graphs.	RB
		Unit 2 Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles,theorems Representation of a graph by	RB

		matrix, the adjacency matrix, incidence matrix, weighted graph, Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.	RB
COURSE	COURSE	AESTER - V COURSE TOPIC	Teachers
CODE SH/MTH / 501/C-11	TITLE Partial Differential Equations and Applications	Unit 1Partial Differential Equations –Basic concepts and Definitions.Mathematical Problems. First-Order Equations: Classification,Construction and GeometricalInterpretation. Method ofCharacteristics for obtainingGeneral Solution of Quasi LinearEquations. Canonical Forms ofFirst-order Linear Equations.Method of Separation ofVariables for solving first orderpartial differential equations.	RB
		Unit 2 Derivation of Heat equation, Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order Linear Equations to canonical forms. Unit 3	RB

		The Cauchy problem, Cauchy- Kowalewskaya theorem, Cauchy problem of an infinite string. Initial Boundary Value Problems. Semi-Infinite String with a fixed end, Semi-Infinite String with a Free end. Equations with non- homogeneous boundary conditions. Non- Homogeneous Wave Equation. Method of separation of variables, Solving the Vibrating String Problem. Solving the Heat Conduction problem	
		Unit 4 Central force. Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.	AI
SH/MTH / 502/C-12	Group Theory - II	Unit 1 Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.	MN
		Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental Theorem of finite abelian groups.	MN
		Unit 3 Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized	MN

		Cayley's theorem. Index theorem.	
		Unit 4	MN
		Groups acting on themselves by	
		conjugation, class equation and	
		consequences, conjugacy in Sn,	
		p-groups, Sylow's theorems and	
		consequences, Cauchy's	
		theorem, Simplicity of An for n \ge	
		5, non-simplicity tests.	
SH/MTH /	Linear	Unit 1	CDG
503/DSE-1	Programming	Introduction to linear	
	(DSE T1)	programming problem. Theory of	
		simplex method, graphical	
		solution, convex sets, optimality	
		and unboundedness, the simplex	
		algorithm, simplex method in	
		tableau format, introduction to	
		artificial variables, two - phase	
		method. Big - M method and	
		their comparison.	
		Unit 2	CDG
		Duality, formulation of the dual	
		problem, primal - dual	
		relationships, economic	
		interpretation of the dual.	
		Transportation problem and its	
		mathematical formulation,	
		northwest - corner method, least	
		cost method and Vogel	
		approximation method for	
		determination of starting basic	
		solution, algorithm for solving	
		transportation problem,	
		assignment problem and its	
		mathematical formulation,	
		Hungarian method for solving	
		assignment problem.	
		Unit 3	CDG
		Game theory: formulation of two	
		person zero sum games, solving	
		two person zero sum games,	
		games with mixed strategies,	
		graphical solution procedure,	
		linear programming solution of	

		games.	
SH/MTH /	Probability and	Unit 1	AI
504/DSE-2	Statistics (DSE	Sample space, probability	
	T4)	axioms, real random variables	
		(discrete and continuous),	
		cumulative distribution function,	
		probability mass/density	
		functions, mathematical	
		expectation, moments, moment	
		generating function,	
		characteristic function, discrete	
		distributions: uniform, binomial,	
		Poisson, geometric, negative	
		binomial, continuous	
		distributions: uniform, normal,	
		exponential.	
		Unit 2	AI
		Joint cumulative distribution	
		function and its properties, joint	
		probability density functions,	
		marginal and conditional	
		distributions, expectation of	
		function of two random variables,	
		conditional expectations,	
		independent random variables,	
		bivariate normal distribution,	
		correlation coefficient, joint	
		moment generating function	
		(jmgf) and calculation of	
		covariance (from jmgf), linear	
		regression for two variables.	
		Unit 3	AI
		Chebyshev's inequality,	
		statement and interpretation of	
		(weak) law of large numbers and	
		strong law of large numbers.	
		Central Limit theorem for	
		independent and identically	
		distributed random variables with	
		finite variance, Markov Chains,	
		Chapman-Kolmogorov equations,	
		classification of states.	
		Unit 4	AI
		Random Samples, Sampling	

Distributions, Estimation of parameters, Testing of hypothesis. SEMESTER – VI					
COURSE	COURSE	COURSE TOPIC	Teachers		
CODE	TITLE				
SH/MTH / 601/C-13	Metric Spaces and Complex Analysis	Unit 1 Metric spaces: Sequences in metric spaces, Cauchy sequences. Complete Metric	RB		
		Spaces, Cantor's theorem. Unit 2 Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine-Borel property, Totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism. Contraction mappings. Banach Fixed point Theorem and its application to ordinary differential equation.	RB		
		Unit 3 Limits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability.	RB		

		Unit 4 Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy- Goursat theorem, Cauchy integral formula.	RB
		Unit 5 Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples.	RB
		Unit 6 Laurent series and its examples, absolute and uniform convergence of power series.	RB
SH/MTH /	Ring Theory and	Unit 1	CDG
602/C-14	Linear Algebra II	Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, and unique factorization in Z [x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains.	

		for a linear operator, canonical forms. Unit 3 Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's	CDG
		inequality, the adjoint of a linear operator. Least Squares Approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem.	
SH/MTH / 603/DSE-3	Number Theory (DSE T7)	Unit 1 Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem, Fermat's Little theorem, Wilson's theorem. Unit 2	MN
		Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi - function, Euler's theorem, reduced set of residues. some properties of Euler's phi-function.	
		Unit 3 Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli. Public key encryption, RSA encryption and	MN

		decryption, the equation x2 + y2= z2, Fermat's Last theorem.	
SH/MTH/ 604/DSE-4	Project Work		AI